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On a Point of Order 
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A method of using algebraic curves to obtain estimates of critical points 
accurate enough to identify them as simple algebraic numbers (if that is what 
they are) is discussed and illustrated with an application to the q-state Potts 
model on the triangular lattice for cases of pure two-site interactions and pure 
three-site interactions. In the latter case the critical point is conjectured to be 
z 2 = (�89 x/~)~q-2//2+ q (q/> 1). In a similar conjecture for the critical percolation 
probability on the directed square lattice, q~/2(q c + 3) = 2 (qc + Pc = 1 ). 

KEY WORDS: Statistical mechanics; Potts models; algebraic functions; 
transfer matrix. 

1. I N T R O D U C T I O N  

The occasion to reminisce seldom presents itself in the scientific text; 
perhaps a brief indulgence is possible (D.W.W.). Below spring tide level in 
the gloomy depths of the Wheatstone Laboratory (reconstructed from a 
cavity in part created by the Luftwaffe) graduate students relinquished 
their remaining hold on innocence. Spin Hamiltonians, power series, 
embeddings, confidence limits (!), and double length arithmetic "close in 
on the growing boy. ''(1) The demands of eyeball counting were heavy; few 
escaped with an eyesight unimpaired. In the years following their experien- 
ces at King's College London many continued to find much to interest 
them in the continuing growth and development of lattice models in 
statistical mechanics. 

In 1965 at a conference on critical phenomena in Washington, 
Domb (2) speculated on the possibility of engineering exact solutions to 
critical phenomena. The approach was combinatorial and considered the 
asymptotic growth of the embeddings of classes of multiply connected 
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graphs which contribute to terms in the high-temperature power series 
expansions found in the Ising model. A difficult problem in itself, but one 
considered to be simpler than the Ising problem. In this paper we adopt the 
engineering spirit and present a novel and hopefully even an entertaining 
method of "guessing" exact critical points. In this approach the emphasis 
is focused upon the transformation structure that can be found in the 
algebraic functions generated by finite transfer matrices. The guessing game 
is not simply on grounds of numerical extrapolation; very accurate numeri- 
cal data are indeed obtainable, but alongside is the search for evidence 
of a transformation symmetry analogous to the simple inversion symmetry 
of the self-duality transformation, but which may only become exact 
asymptotically (with fixed boundary conditions). 

Guessing sets of rational fractions for exponents on the basis of data 
gleamed from expansions was (and still is) a popular pastime, but much 
less so for critical points. The critical points which are known exactly are 
simple algebraic numbers, where simple means polynomials of low degree 
and very small integer coefficients. Thus, Gaunt, using data obtained from 
low- and high-density expansions of only modest accuracy, correctly 
guessed 

z 2 -  l l z -  1 =0  (1) 

for the singularities of the grand canonical partition function of the hard- 
hexagon model, where z is the activity (Baxter(3)). It has been shown 
recently (4) that (1) can be inferred "exactly" in a technique similar to those 
described here. In Section 2 we discuss sequences of algebraic curves and 
algebraic branch points which can respectiyely throw some light on close 
algebraic symmetry and form very accurate numerical estimates of critical 
points, In Section 3 we illustrate both of these features in applications to 
both the two-site and three-site q-state Potts model on the triangular 
lattice, and in the declared spirit present a conjecture that the critical point 
of the three-site model is given by 

(@)(q-2'/2-t-q (q>~l) (2) ,-/2 

A conjecture for Pc. in the directed percolation problem on the square 
lattice is also added. 

Although in this paper we concern ourselves only with the critical 
point, numerical estimates of leading exponents in the partition function at 
its singular points (both physical and nonphysical) can be extracted from 
sequences of algebraic branch points in the complex temperature plane. 
Details of this and other aspects will appear in future publications. 
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2. CIRCLES, A L M O S T  CIRCLES, AND BRANCH POINTS 

Following recent work, (4 9) we are concerned with certain algebraic 
functions generated by a finite transfer matrix. Here our examples are all 
two dimensional, where Tm(z) denotes the transfer matrix of an m x n strip. 
The single variable z (we consider a one-parameter  model) is a suitable 
temperature variable and the elements of Tm(z) are arranged to be positive 
integer powers of z. The transfer matrix is reduced to block diagonal form 

T.(~) =| ~(~) (3) 
k 

such that each rk(z) whose elements are polynomials in z is irreducible. 
Taking z~(z) to be the symmetric block, then the characteristic equation of 

l(Z) defines an irreducible algebraic equation 

F(A, z) = ~ A~/~A~z ~ = 0 (A~p integer) (4) 
~B 

and a single algebraic function A, one of the function elements of which A + 
is the partition function per site of the m x oc strip (z > 0). 

We can view the function 

(i} Zmn(Z ) = Trace r~(z) (5) 

as a block partition function which becomes the partition function per site 
in the limit of n --* oe on the nth root of (1) The zeros of the block parti- Zmn" 
tion function in the limit of n ~ oo lie in regions of the z plane where the 
eigenvalues of r~(z) are simultaneously equal and maximum in modulus. 
This region is necessarily an algebraic curve for m finite and is denoted by 

~+ 
C m . The algebraic equation which will generate this curve is the resolvent 
polynomial between (4) and 

F(Ah, z) = 0 (6) 

which on allowing for trivial factors and the obvious inversion symmetry 
on h ~ h 1, can be expressed as a polynomial equation 

Rm(w, z) = ~ C~z~w ~ (C~ integer) (7) 

where w=�89 Thus, for real w on Iwl ~< 1 the branches of (7) trace 
out a system of algebraic curves connecting the branch points of A. C l+ is 
the subset of these curves along which the eigenvalues which are equal in 
modulus are simultaneously maximum in modulus. 
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The branch points of A on C~ + are of special interest; they are given 
by (7) with w = 1, which is the discriminant of (4). From this viewpoint the 
mechanism by which a real critical point zc. emerges in the full thermo- 
dynamic limit of m -* oo is algebraic in that the algebraic singular points of 
A~-(m, z) converge onto zc. Simultaneously, the sequence C~m + converges 
onto the limiting locus of the block partition function zeros. The curve C~m + 
is naturally extended on the domain w real, I wl > 1. This extension through 
the end point of C~ + which is closest to the positive real axis extends the 
curve down to an intersection point z~.(m) on the real axis which forms an 
approximation to the critical point. The extension of C~ + appears always 
to have quadratic curvature across the real positive axis, and in cases 
where C~ + is orthogonal to the real axis at zc the points zc(m) are fre- 
quently amazingly close to zc. (see Table I); this gives rise to an interesting 
problem. The resolvents (7) are both wonderously long and irreducible 
(trivial factors apart), even for small values of m. The integer coefficients 
become very large very rapidly, so how exactly does a simple algebraic 
factor such as (1) emerge in the limit of m -~ oo ? 

Figures 1 and 2 show C l+ for the 2-state Potts model (equivalent to 
the Ising model) on the triangular lattice; the planes are z and z 2, respec- 
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Fig. 1. C~ + for the q=2, 2-site Potts model in the z=e K planel 
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Fig. 2. C~ + for the q = 2, 2-site Potts model in the z2= e 2~ plane. 

tively. Clearly, the latter presents no difficulty; C7 ~+ on real w is part  of the 
circle 

z 2 =  1 + 2e i~ (8) 

plus a line segment, ]w[ ~< 1. So, moving from the z to the Z 2 plane uncovers 
an inversion symmetry.  Here C~m + is always an arc of  (8) independent of m, 
and 2 = zc (m  ) is the e x a c t  critical point  z 2 3, so (7) generates (8) for all rn 

c 

and real w. This invariant circle is of  course the consequence of the star- 
triangle and duality transformations.  (1~ It is simple to see that if a trans- 
format ion z--* z (u )  leaves (4) invariant under  u -*  u - I  (after the removal of 
trivial factors from A), then the circle jul = 1 will always be generated by 
(7) on real w. Thus, in the present case at m = 4, (4) can be put into the 
form 

/i 4 - 8(2v 2 + 4v + 1 ) ,~3 q _  64(2v + 3) 2 22 - 256(2v z + 4v + 1 ) 2 + 1024 = 0 (9) 

where 2 is a simple multiple of A and 

v = u + u  1 and u = l ( z 2 -  1) (10) 
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Conversely, if C~ + is exactly a circle in some complex plane g(z), then (4) 
has some form of inversion symmetry. However, what if (7) generates a 
curve which in some plane g(z) is very close to a circle over a sequence of 
m values? This allows for independent estimates of the center A and radius 
B and a critical point estimate of g(z,.)= A + B. Such behavior suggests 
that the model may have an inversion symmetry with u =  [ g ( z ) - A ] / B  
which becomes exact asymptotically in the limit of m--* oe. In effect, the 
estimates of the critical point obtained by extending C~m + onto the real axis 
are partitioned into two components A and B; thus, z~.(m)= 2.9820... could 
be more easily recognized as 45-+ x/3  if either A or B could be obtained 
accurately and independently. This, then, is the present guessing game. 

3. POTTS M O D E L S  ON THE T R I A N G U L A R  LATTICE 

Our first example is the two-site, q-state Potts model on the triangular 
lattice, and is chosen to illustrate the phenomena of approximate inversion 
symmetry. For reference material on Potts models the reader is referred to 
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Fig. 3. C~ + for the q = 3, 2-site Potts model in the Z 2 plane. 
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the excellent review by Wu. (1~) The critical point of this model is known 
exactly at q = 2 and for q ~> 4 and is given by a root of the equation 

z3-3z+2-q=O ( z = e  K) (11) 

which is also expected to hold at q = 3. The inversion symmetry of the star- 
triangle and duality transformations holds only for q = 2, although a two- 
variable duality relation is possible for q ~> 2 /f the 3-site Pot ts  interaction 
is added to half of the triangles of the lattice. (11'12) Figures 3-5 show the 
sequence C~ + for q =  3 and m = 3 ,  4, and 5, and Figs. 6 and 7 give C~ + 
for q = 4  and 5, respectively. The intersection points z,.(m) obtained by 
extending the curves through the branch point closest to the positive real 
axis are listed in Table I. 

The full algebraic curves z(w) (w real) obtained from the resolvent (7) 
are immensely complicated and have many intersection points with the real 
z axis. Such points correspond to the real branch points of z(w), since they 
are the meet points of complex conjugate curves�9 They are also points 
where the ratio of any pair of eigenvalues obtained from (4) is both real 
and extremum with respect to real z. Thus, each intersection point can be 
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Fig. 7 C~ + for the q = 5, 2-state Potts model in the z 2 plane 

associated with a pair (i, j )  of function elements of A, and we consider 
these to be ordered in modulus A~-> IAzl > IAaI...; thus, in Table I the 
numbers relate to the pair (1, 2). In Table II we list a small selection of 
such points close to z c with their associated pair. As can be seen, in a 
number of cases the intersection points are amazingly close to z,;  for exam- 
ple, the point z =  1.8793825... for the case q = 3 ,  m = 4 ,  and ( i , j ) = ( 1 ,  5), 
where z,.= 1.8793852. Any search of the space of irreducible quadratic, 

Table I. App rox ima t i ons  to  the  Cr i t ica l  P o i n t z c ( m  ) Obta ined f rom 
C~ + for the Two-S i te  Potts Model 

m q = 3  q = 4  q = 5  

2 1.8924 2.0593 2.1297 
3 1.8836 2.0062 2.1110 
4 1.8812 2.0025 2.1067 
5 1.8803 2.0013 2.1052 
6 1.8799 

oo 1.87938 2 2.10380 
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Table II. Some  Intersect ion Points Close to z c Obta ined f rom the Full 
Algebraic Curve z(w) in (7 ) ,  for  the T w o - S i t e  Potts Mode l  

q = 3 ,  m = 4  q = 4 ,  m = 5  q = 5 ,  m = 5  

Pairs (i, j )  Intersections Pairs (i, j )  Intersections Pairs (i, j )  Intersections 

1, 2 1.8812 1, 2 2.0013 1, 2 2.1052 
1, 3 1.8716 1, 3 2.0001 1, 3 2.1057 
1, 4 1.8856 1, 4 2.0036 1, 5 2.1034 
1, 5 1.8793825... 1, 5 1.9996 1, 7 2.1040 
4, 5 1.8749 1, 9 1.9999 1, 10 2.10381 

cubic, and quartic equations with "small" integer coefficients would 
immediately reveal (11) at q = 3 using this intersection point; similarly the 
point from (1, 10) at q = 5 ,  m = 5 .  In the hard-hexagon model many 
such (i, j )  pairs exist with intersection points occurring at the exact roots 
of (1). (4) 

The outer curves in C 1+ shown in Figs. 3-7 clearly appear to contain 
the arcs of a circle; if corresponding members of a sequence are overlaid 
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they are indistinguishable in the right half-plane. The various branches of 
CA + derive from a quadratic factor 

z 2 - b ( w )  z + c ( w )  = 0 (12) 

in the resolvent (7). Thus, if 

z = A  +Be +i~ (13) 

are the roots of such a factor, then 

c = A b + ( B Z - A  z) (14) 

1 +  Taking c =  ] 2 1 2  and b = 2 (real part of z) from points in C m , w e  obtain a 
b-c plot which provides a measure of the closeness of fit to arcs with quad- 

s+ ratic curvature in C m , and correspondingly estimates of the center and 
radius�9 Figures 8-10 show the b-c plots for m = 4  and q =  3, 4, and 5, 
respectively. The higher m values of 5 and 6 are indistinguishable from 
these plots, which clearly have an impressively linear section relating to the 

1 +  outer arc of C 4 . It is impossible to avoid the speculation that the two-site 
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Fig. 9. A b - c p l o t  for C~ + in Fig. 6. 
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Ports model  on the triangular lattice has an asymptotic inversion symmetry 
in the variable u given by 

z~= 1 + [ z ~ ( q ) -  11 u (15) 

where lul = 1 is C 1+ in the limit of m ~ oo. 
Our second example is the three-site Potts model on the triangular 

lattice, where the three-site Potts term L6(o,  a', a") (a = 1, 2 ..... q) exists on 
all the triangles of the lattice. {11) Here the critical point is not known. The 
model was the occasion of a conjecture by Wu {t3) that the critical point 
was simply given by 

z 2 = l + q c  ( z = e c )  (16) 

but this was shown to be incorrect by Enting and W u  (14) in a study of the 
q = 3 case. The same model in which interactions exist in only half of the 
triangles does have an inversion symmetry through a self-duality transfor- 
mation and the curves C~ + are arcs on the invariant circle 

z = 1 + qe i~ ( z  =- e L) (17) 
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Thus, if (16) had been true, this inversion symmetry would have simply 
shifted from the z plane to the z 2 plane. Our calculations at finite values of 
m show that in fact the model appears to be very close indeed to an inver- 
sion symmetry in the z 2 plane in the form 

z2= A(q) + qu (18) 

and C~m + extraordinarily close to a circle of radius q, but with centers A(q) 
which drift away from z = 1 for q > 2. This shift is quite small for q = 3, 
which explains why the series expansion estimate of z~. obtained by Enting 
and Wu/14) ( e -L=0 .5038  + 0.0005) is close to 2, and the conjecture (16), 
which in a sense is correct with regard to the appearance of q. 

In Figures 11-13 we show C~ + for q =  3, 4, and 5; the corresponding 
b-c plots are impressively linear. Taking the curvature from the 
neighborhood of the branch point, the radii are estimated, respectively, at 
2.97, 3.99, and 5.04. We adopt  the conjecture that CA + asymptotically con- 
verges to a circle of radius q in the z 2 plane. The approximations to zc 
obtained through z,(m) are shown in Table III.  Some detective work on 
A(q) in (18) remains. The values of zs(m) in Table I I I  are almost certainly 
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Fig. 11. C~ + for the q = 3, 3-site Potts model in the z 2= e 2L plane. 
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Fig. 12. C~ + for the q=4 ,  3-site Potts model in the z 2 = e  2L plane. 

correct  to order  10 3, and in the case of  q = 4  we have two intersections 
at 2.20568 .... which is probably  very close to the exact value. Thus, 
zo(5)-q probably  estimates A(q) in (18) to 10 -3, and on this basis it is 
fairly easy to tease out the conjecture 

/x/-~\ iq - 2)12 
z:=~--j--)  +q (19) 

The conjectured values are listed in Table III.  In addition, the correct value 
z~ 2 = 3 is recovered at q = 2 and a further test is available at q = 1, where the 
model  has a percolation limit on the honeycomb lattice. (is) Monte  Carlo 
RG finite-size scaling calculations were carried out  by Vicsek and 
Kert6sz, (~5) who reported a value of the critical probabil i ty corresponding 
to z,  of 

ze 1 = 0.6973 + 0.0008 (20) 

and observed it to be in disagreement with (16). At q =  1, (19) yields the 
value 

z~. l = 0.69428... (21) 



On a Po in t  o f  O r d e r  613 

5 -  

0 

- 5 -  

-5 

Fig 13. 

, - r  

. t  

� 9  

. ~  

. . "  �9 - -  . . . . . .  . o 

. .  - . � 9  
. 

t 

o 

o. 

. . -  

.o" 

.~  

I I 

0 5 

C~ ~- for the q=5,  3-site Potts model in the z2=e 2L plane 

and, in view of Table III,  we assume that the "confidence limits" in (20) are 
a little overconfident 

As a final comment  on algebraic critical points, one of us ( D W W )  
adds an observation on the directed percolation problem on the square net 
lattice and on the hard-square gas  In recent series expansion work Baxter 
and Gut tmann (16) report an estimate of the critical probability 

Pc = 0.644701 • 0.000001. (22) 

Table  III. A p p r o x i m a t i o n s  to  the  Cr i t ica l  P o i n t z  c O b t a i n e d  f r o m  the  
In te rsec t ion  Points  Zc(m ) 

m q=3  q = 4  q = 5  

3 1.9818 2.205683 2.4106 
4 1.98219 2.2056 2.40997 
5 1.98242 2.205685 2.40984 

Eq.(19) 1.982575.. .  2.205906...  2.409549... 
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While considering work on this model of a similar nature to that reported 
in this paper, it was observed that the equation 

has a root at 

, ~ ( q c +  3 ) = 2  (p,+qc= 1) (23) 

= (1 + xf2) ~/3 + (1 - x/2) 1/3 (24) 

pc=0.6446986... (25) 

corresponding to a value of 

On such occasions one has to ask what meaning does one attach to the 
term "confidence limit"?--one would so love to know! 

The hard-square-gas problem (3'17) has failed to yield any exact critical 
parameters. The grand canonical partition function clearly has two real 
singular points in the activity plane, a physical singularity zc and a non- 
physical singularity ZNV. Attempts to uncover a critical point equation 
similar to (1) using Gaunt's trick (3) or the technique described by Wood 
and Turnbull (4) have failed; consequently, the following observation may 
be of interest. The two singular points have been estimated to have the 
va lues  (17,18) 

z~ = 3.7962 _+ 0.0001 (26) 

and 

zNv = -0.1193388809 _ 0.000,000,001. (27) 

Taking (27) to 4 d.p., one observes that 

x/~ (z,+ZNp) = 5.1999 (28) 

suggesting the symmetric sum 5 + ~ (Kleinian theorists please note). The 
remaining part of the algorithm is left as an exercise for the reader. 
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